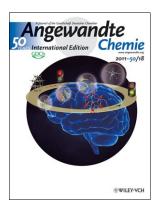


Four types of polyoxometalates (POMs) ...


... have been found to be efficient inhibitors of amyloid formation by amyloid β peptides $(A\beta)$ associated with Alzheimer's disease. X. Qu and co-workers show in their Communication on page 4184 ff. that the inhibition selectivity of the POMs is due to size-specific electrostatic interactions between the POMs and $A\beta$, with the POMs binding to the positively charged His13–Lys16 cluster region of $A\beta$.

Inside Cover

Jie Geng, Meng Li, Jinsong Ren, Enbo Wang, and Xiaogang Qu*

Four types of polyoxometalates (POMs) have been found to be efficient inhibitors of amyloid formation by amyloid β peptides ($A\beta$) associated with Alzheimer's disease. X. Qu and co-workers show in their Communication on page 4184 ff. that the inhibition selectivity of the POMs is due to size-specific electrostatic interactions between the POMs and $A\beta$, with the POMs binding to the positively charged His13–Lys16 cluster region of $A\beta$.

